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Sodium MRI has been shown to be highly specific for glycosaminoglycan (GAG) content in articular car-
tilage, the loss of which is an early sign of osteoarthritis (OA). Quantitative sodium MRI techniques are
therefore under development in order to detect and assess early biochemical degradation of cartilage,
but due to low sodium NMR sensitivity and its low concentration, sodium images need long acquisition
times (15–25 min) even at high magnetic fields and are typically of low resolution. In this preliminary
study, we show that compressed sensing can be applied to reduce the acquisition time by a factor of 2
at 7T without losing sodium quantification accuracy. Alternatively, the nonlinear reconstruction tech-
nique can be used to denoise fully-sampled images. We expect to even further reduce this acquisition
time by using parallel imaging techniques combined with SNR-improved 3D sequences at 3T and 7T.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Osteoarthritis (OA) is the most common form of arthritis in
synovial joints and a leading cause of chronic disability, mainly
in the elderly population. In 2008, it was estimated that nearly
27 million adults in the United States (9% of the population) have
clinical OA. It is predicted that by the year 2030, nearly 67 million
adults (19% of the US population) will be affected by OA [1,2].
There is no known cure for OA and present treatments focus
mainly on pain management and ultimately, joint replacement.
There are many obstacles to studying OA, including heterogeneity
in etiology, variability in progression of disease, and long time peri-
ods required to see morphological and structural joint changes.
Consequently, we currently lack the ability to predict the course
of the disease in individual patients. Therefore, there is a high
demand for the development of reliable, objective, non-invasive,
and rapid quantitative imaging biomarkers. From a biochemical
point of view, OA is a degenerative disease of articular cartilage
and is mainly characterized by a loss of glycosaminoglycans
(GAGs), a possible change in size and organization of collagen
fibers, and by increased water content. Functional magnetic
ll rights reserved.
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resonance imaging (MRI) techniques are under development to
detect biochemical changes in cartilage such as T1q mapping [3],
T2 mapping [4], delayed Gadolinium-enhanced MRI of cartilage
(dGEMRIC) [5], GAG chemical exchange saturation transfer (gag-
CEST) [6], diffusion MRI [7] and sodium (23Na) MRI [8–10]. All
these methods have their own advantages and disadvantages
[11,12], but quantitative sodium MRI has been shown to be highly
specific for the GAG content in cartilage [9,13,14]. Quantitative
sodium MRI could therefore be used as a means of detection and
assessment of the degree of biochemical degradation of cartilage
in very early stages of OA [8–10,13–16]. Recent technological
developments such as high magnetic field scanners, novel ultra-
short echo time (UTE) pulse sequences, multi-channel radiofre-
quency (RF) arrays and non-Cartesian reconstruction methods
have great potential for improving the performance of multinu-
clear imaging. However, due to the low sodium concentration
in vivo and its low NMR sensitivity, imaging of sodium in cartilage
still requires long acquisition times (15–20 min for usual sodium
3D images and 25 min for fluid suppressed images) with relatively
low resolution [17–19].

Compressed sensing (CS) is a powerful method for image recon-
struction which enables reduced imaging time by k-space under-
sampling. It has been under development since 2006 [20] and
has been successfully applied to proton and 3He MRI [21–23], 13C
and 19F spectroscopy [24,25], and to microfluidic flow imaging
[26], as well as to combined time/k-space domain imaging
[27–29]. CS is based on the sparsity (or compressibility) of the
image in any known transform domain, the incoherence of the
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undersampling artifacts, and a dedicated nonlinear reconstruction
algorithm. Sodium MRI of articular cartilage is intrinsically sparse
and is therefore a good candidate for CS that should allow recon-
struction of images from undersampled data within clinically fea-
sible acquisition times (on the order of 10 min or less).

In this work, compressed sensing is applied to undersample a
3D radial pulse sequence for sodium MRI at high field (7T). The
nonlinear reconstruction used in CS is also proposed to denoise
fully-sampled images.
2. Materials and methods

2.1. Acquisition protocol

Data acquisition was performed in vivo on 4 asymptomatic vol-
unteers (2 males, 2 females, average age: 36 ± 15 years) with a 3D
radial sequence on a 7T whole-body scanner (Siemens Medical
Solution, Erlangen, Germany), with a transmit/receive sodium RF
knee coil (quadrature, birdcage) single-tuned at 78.6 MHz (Rapid
MR International, Columbus), length 27 cm, and inner diameter
21 cm. Acquisition parameters for a fully sampled data set were:
10,000 projections, TE = 0.15 ms, TR = 100 ms, RF pulse flip an-
gle = 90� of duration 500 ls, time of acquisition = 17 min. Note that
the TE was calculated from the end of the RF pulse to the beginning
of the data acquisition. The study was approved by the institutional
review board and the volunteers signed an informed consent form
prior to the experiment. The field-of-view (FOV) was chosen as
200 mm isotropic in order to keep a constant FOV for all volunteers
who may have different knee sizes, and so that the calibration
phantoms used for sodium quantification all lie within the FOV
(see the Tissue Sodium Concentration (TSC) Quantification section).

2.2. Standard image reconstruction

Once the fully sampled data was acquired, images were recon-
structed off-line in Matlab (Mathworks, Natick, MA, USA) with a
non-uniform Fast Fourier Transform (NUFFT) regridding algorithm
as described in [17,30,31]. All images were reconstructed as isotro-
pic 100 � 100 � 100 voxels images, resulting in a nominal isotropic
resolution of 2 mm. The R factors (acceleration rates) denote the
degree of undersampling as follows:

� R = 1: Fully sampled data.
� R = 2, 3, 4: 50%, 33% and 25% of the radial projections were ran-

domly chosen and kept from the original data; the other projec-
tions were assigned a value of 0. This random sampling was
applied 100 times for each R factor (2, 3, and 4).

2.3. Compressed sensing (CS)

CS aims to accurately reconstruct certain signals and images
from undersampled data acquired below the Nyquist rate. Three
requirements are necessary to apply CS [20–22,32]:

(1) Sparsity: The desired image must have a sparse representa-
tion in a known transform domain (it must be compress-
ible): it must be composed of a few high-value coefficients
and many low-value coefficients, so that thresholding the
low-value coefficients does not degrade the image quality
too much. Usual sparsifying transforms are the discrete
wavelet transform (DWT), discrete cosine transform (DCT),
and finite differences. Sodium cartilage images acquired in
this study are intrinsically sparse in the image domain as
the strongest signals of interest occur only in �20% of the
voxels in the 3D image.
(2) Incoherence: The measurement basis and the sparse repre-
sentation basis must be uncorrelated, so that the k-space
undersampling artifacts add incoherently to the sparse sig-
nal coefficients. Thus, non-Cartesian data sampling is pre-
ferred for the design of sampling trajectories with low
coherence. The 3D radial acquisition already fulfills this
requirement as the spherical coordinates of the spokes in
our acquisition scheme are chosen following the Rakhma-
nov–Saff–Zhou algorithm [33,34] in order to achieve a
homogeneous distribution of the data along the radial views
in a sphere. Most of the acquired data points are therefore
away from the Cartesian grid.

(3) Nonlinear reconstruction: The image should be recon-
structed by a nonlinear method that enforces both sparsity
of the image representation in the transform domain and
consistency of the reconstruction with the acquired samples.
The image x is reconstructed from the acquired data y by
minimizing the function f(x):
f ðxÞ ¼ kFx� yk2
2 þ k1kWxk1 þ k2TVðxÞ; ð1Þ
where kxk1 ¼
P

ijxij represents the ‘1 norm, kxk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ijxij2
q

is the ‘2

norm, F denotes the (Cartesian) FFT, W is the sparsifying transform
and TV(x) represents the total variation of the image x (sum of the
absolute variations of the image). Minimizing the ‘1 norm promotes
the sparsity while minimizing the ‘2 norm enforces the data consis-
tency. TV is a finite difference transform and it is often useful to add
it as a penalty in order to increase the sparsity of the image in both
the transform domain W and in the finite difference domain. k1 and
k2 are weighting factors for the ‘1 norm and TV respectively. Mini-
mization of f(x) was performed in Matlab (Mathworks, natick, MA,
USA) using the nonlinear conjugate gradient method.

In this study, CS was applied on the normalized 3D regridded
Cartesian k-space y of the images (after NUFFT reconstruction with
R = 1, 2, 3 and 4), which was used for data consistency. The CS algo-
rithm for reconstructing x was applied with 72 iterations and
tested over a range of values for k1 and k2: k1 = 0.0005, 0.0010,
0.0025, 0.0050, 0.0075, 0.0100 and k2 = 0, 0.0005, 0.0010, 0.0025,
0.0050, 0.0075, 0.0100. The CS algorithm was tested with W = 1
(no sparsifying transform) on all volunteers and also with
W = DCT on one volunteer. The average reconstruction time for
each pair k1/k2 was 5–10 min when W = 1 and 9–20 min when
W = DCT.
2.4. SNR measurements

Signal-to-noise ratio (SNR) measurement is a difficult task on
images obtained from nonlinear reconstructions methods such as
NUFFT and CS. In order to be able to fairly compare the SNR of
images reconstructed with and without CS after NUFFT, 100 ran-
dom samplings of the data were used to obtain more uniform dis-
tribution of the noise for all the images. The statistical standard
deviation (STD) of all the voxels over these 100 randomly sampled
reconstructed images was calculated for R = 2, 3 and 4, with and
without CS applied after the NUFFT reconstruction. The distribu-
tion of the STD of noise (from 20 slices outside the knee anatomy)
was very similar to a normal distribution (see Fig. 1, red fit) in all
cases. This is to be expected for a large number of values
(N = 100) for which the STD is calculated (the v2 distribution of
STD becomes a normal distribution when N > 50 [35]). Note that
since for R = 1 the full data cannot be randomly resampled, STD
was extrapolated with a linear fit as a function of

ffiffiffiffi
R
p

(see Fig. 2).
The mean image (over 100 random samplings) was also calculated
for R = 2, 3, and 4. The mean signal in cartilage was then measured
in selected ROIs of 30 voxels in 4 different regions in the cartilage



Fig. 1. Example of distribution of the standard deviations (STD) of the noise for R = 2, 3 and 4, for NUFFT (green) and NUFFT+CS (blue) and their best fit with a normal
distribution (red curve), from one volunteer. Histograms were calculated from the STD of all the voxels of the 10 first and 10 last coronal slices of the 3D data (200,000 voxels)
from one volunteer. STD of noise was calculated from 100 reconstructions with random sampling of the 10,000 acquired radial views for R = 2, 3 and 4. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Linear fit of mean STD of noise from data with R = 2, 3 and 4, for all 4
volunteers (Vol.), and 2 reconstruction methods (NUFFT and NUFFT+CS). Red dots:
Extrapolated mean STD of the noise for R = 1 estimated from the linear fit of the
data measured with R = 2, 3 and 4, as a function of

ffiffiffiffi
R
p

. (1) Vol. 3, NUFFT. (2) Vol. 4,
NUFFT. (3) Vol. 3, NUFFT+CS. (4) Vol. 2, NUFFT. (5) Vol. 1, NUFFT. (6) Vol. 4,
NUFFT+CS. (7) Vol. 2, NUFFT+CS. (8) Vol. 1, NUFFT+CS. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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over 4 consecutive slices of these mean images. The cartilage re-
gions were: patellar (abbreviation: PAT), femoro-tibial medial
(MED), femoro-tibial lateral (LAT), and posterior femoral condyle
(CON). The SNR of the images for each R was then calculated as:
SNR = mean cartilage signal divided by mean STD of noise.
2.5. Tissue Sodium Concentration (TSC) quantification

The images were acquired with calibration tube phantoms that
were placed on the knee cap and included in the FOV. Sodium
quantitation was then performed using linear regression in Matlab
as follows: ROIs were drawn in 4 calibration phantoms (150, 200,
250 and 300 mM NaCl) and their average signal intensities were
corrected for T1, T2�short and T2�long of the gels as described in [17].
Another ROI was drawn in the noise area and the mean value of
the noise was used as a 0 mM sodium concentration phantom. A
linear regression curve of these corrected phantom intensities
and noise versus sodium concentrations was then calculated and
used to extrapolate the sodium 3D maps of the whole sample. After
the regression curve calculation from the gel signals but before
extrapolation of the images to sodium maps, the images were also
corrected for the T1, T2�short and T2�long of cartilage measured in vivo
[36]. As 75% of the volume in cartilage is extracellular and com-
posed of water, and sodium ions are mainly present in this space,
the sodium maps were divided by 0.75 in order to obtain the real
sodium concentration [37,38]. Less than 5% of the cartilage volume
is composed of cells [39] and the intracellular sodium concentra-
tion, estimated around 5-10 mM, can therefore be considered neg-
ligible in the present study.

Mean sodium concentrations in the 4 different regions of the
cartilage were measured with exactly the same protocol used for
measuring the signal (same slices, same ROIs) as described in the
SNR measurements section.

2.6. Statistical analysis

For each volunteer and each region in cartilage, a Student’s t-
test was applied to the resulting sets of pixels (120 voxels) from
the ROIs (30 voxels � 4 slices) on the TSC maps in order to compare
all the CS data with the original fully sampled data (NUFFT, R = 1,
without CS). Statistical significance was defined as the condition
that p < 0.05.

3. Results and discussion

Examples of sodium images and TSC maps from one volunteer
are shown in Figs. 3 and 4 on a coronal plane, for CS parameters
k1 = 0.0005, k2 = 0.0005. Mean SNR and TSC measurements and p
values over all volunteers are given in Tables 1 and 2. SNR was in-
creased when CS was applied directly on fully sampled data for
denoising (+69% on average), and slightly decreased for R = 2 data
(�20% on average) compared to fully sampled data (R = 1). TSC of
the cartilage looked very similar (within the standard deviation)
within the 4 regions of cartilage for all R values, with and without
CS applied, but these values are not a sufficient parameters to val-
idate the accuracy of the measurements. CS data were considered
as valid data for sodium quantification when both of the following
conditions were fulfilled for all volunteers:

(1) All data were compared visually with the original fully sam-
pled image (NUFFT, R = 1, without CS) in order to detect arti-
facts and local modifications of the signal that could be
misinterpreted as a loss of sodium (such regions are indi-
cated by arrows in Fig. 4 for R = 3 and 4). Most of the data
with large TV weighting (k2 > 0.0010) were too blurred to
give accurate estimation of the TSC and details in cartilage,
and were therefore rejected.



Fig. 3. Example of sodium images obtained from one volunteer with NUFFT without CS and with CS, with the parameters k1 = 0.0005, k2 = 0.0005 and W = 1, for acceleration
factors R = 1, 2, 3 and 4.

Fig. 4. Tissue Sodium Concentrations (TSC) in mM corresponding to the images shown in Fig. 3 obtained with NUFFT without CS and with CS, with the parameters k1 = 0.0005,
k2 = 0.0005, for acceleration factors R = 1, 2, 3 and 4. The white arrows indicate zones in the femoro-tibial lateral cartilage where a loss of sodium concentration seems to
appear in the data with R = 3 and 4 (with and without CS), and which could be misinterpreted as a loss of GAG in cartilage.

Table 1
Mean SNR in 4 regions of the cartilage for CS parameters: k1 = 0.0005, k2 = 0.0005 and W = 1. Each mean ± standard deviation of SNR corresponds to the mean value over all
volunteers of the SNR measured over four consecutive slices for each region and each volunteer. The values in the % columns correspond to the variation of SNR in % of the
reference value for each column (NUFFT with R = 1). The numbers in bold correspond to the increased or equal SNR values compared to the reference SNR. Abbreviations:
PAT = Patellar, MED = FT Medial, LAT = FT Lateral, CON = PF Condyle, with PF = Posterior Femoral, FT = Femoro-Tibial.

SNR PAT MED LAT CON

Recon. R SNR % SNR % SNR % SNR %

NUFFT 1 43.8 ± 7.5 0 43.8 ± 6.2 0 42.5 ± 3.4 0 45.3 ± 6.4 0
2 26.4 ± 4.5 �40 26.3 ± 3.4 �40 25.6 ± 2.1 �40 27.3 ± 3.9 �40
3 19.9 ± 3.3 �55 19.8 ± 2.6 �55 19.2 ± 1.6 �55 20.5 ± 2.9 �55
4 16.8 ± 2.9 �62 16.9 ± 2.6 �61 16.3 ± 1.3 �62 17.5 ± 2.5 �61

NUFFT + CS 1 73.9 ± 13.1 +69 74.4 ± 12.4 +70 71.7 ± 6.4 +69 76.7 ± 13.0 +69
2 35.0 ± 6.2 �20 35.2 ± 5.0 �20 34.0 ± 2.9 �20 36.3 ± 5.8 �20
3 24.5 ± 4.2 �44 24.6 ± 3.5 �44 23.8 ± 2.0 �44 25.4 ± 3.9 �44
4 20.0 ± 3.5 �54 20.2 ± 2.7 �54 19.4 ± 1.6 �54 20.9 ± 3.2 �54
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(2) Only CS data where the t-test showed a non-significant dif-
ference in all of the 4 regions of the cartilage compared to
the fully sampled data were considered as valid. From this
selection method, the only valid pairs of CS parameters k1/
k2 were 0.0005/0, 0.0005/0.0005, 0.0010/0, for all volunteers
(but also 0.0010/0.0005 and 0.0025/0 for 3 of them), for
W = 1, for R = 1, 2 and 4 only. When W = DCT, the only valid
pairs of CS parameters k1/k2 were 0.0005/0 and 0.0005/
0.0005, for R = 1, 2 and 4 only. CS data obtained from R = 3
always show a significant difference (p < 0.05) to fully sam-
pled data in at least one part of the cartilage, for all the vol-
unteers (see Table 2).



Table 2
Mean Tissue Sodium Concentration (TSC) in mM in four regions of the cartilage for CS parameters: k1 = 0.0005, k2 = 0.0005 and W = 1. Each mean ± standard deviation of TSC
corresponds to the mean value over all volunteers of the TSC measured over 4 consecutive slices for each region and each volunteer. The same regions of interests (ROIs) were
used to compare measurements with different acceleration rates R for reconstruction. Mean P values over all volunteers were measured with a Student’s t-test for comparing TSC
measured in all voxels of the four ROIs (on four consecutive slices) to the reference data (NUFFT with R = 1). Abbreviations: PAT = Patellar, MED = FT Medial, LAT = FT Lateral,
CON = PF Condyle, with PF = Posterior Femoral, FT = Femoro-Tibial.

Recon. R PAT p MED p LAT p CON p

NUFFT 1 171 ± 42 1 172 ± 24 1 165 ± 3 1 160 ± 9 1
2 171 ± 44 0.513 ± 0.161 174 ± 24 0.663 ± 0.204 165 ± 29 0.695 ± 0.301 161 ± 9 0.724 ± 0.255
3 170 ± 40 0.037 ± 0.033 171 ± 22 0.545 ± 0.303 163 ± 27 0.472 ± 0.342 158 ± 7 0.571 ± 0.328
4 171 ± 45 0.243 ± 0.192 173 ± 22 0.510 ± 0.265 165 ± 31 0.392 ± 0.369 162 ± 8 0.376 ± 0.297

NUFFT + CS 1 170 ± 42 0.600 ± 0.170 172 ± 24 0.882 ± 0.076 164 ± 27 0.624 ± 0.284 159 ± 9 0.833 ± 0.149
2 171 ± 43 0.531 ± 0.236 173 ± 24 0.654 ± 0.179 164 ± 28 0.624 ± 0.247 160 ± 9 0.666 ± 0.171
3 165 ± 39 0.014 ± 0.011 171 ± 23 0.592 ± 0.221 163 ± 27 0.335 ± 0.295 158 ± 7 0.549 ± 0.368
4 170 ± 45 0.371 ± 0.374 173 ± 23 0.506 ± 0.212 164 ± 30 0.395 ± 0.249 161 ± 8 0.403 ± 0.228
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Although R = 4 (with and without CS) can give some results sim-
ilar to fully sampled data for the average TSC (p > 0.05), some parts
of cartilage show a loss of sodium signal mainly due to reconstruc-
tion and undersampling that could be misinterpreted as a real loss
of GAG, as shown on Fig. 4 (white arrows). R = 3 and 4 seem there-
fore to be too high undersampling rates and may lead to statisti-
cally significant differences in TSC measurements compared to
fully sampled data and also to possible misinterpretation of the
images. CS can therefore be used to either de-noise fully sampled
data (R = 1) in order to increase the SNR and therefore potentially
increase the accuracy in sodium quantification, or on undersam-
pled data with R = 2 to decrease the total acquisition time without
losing TSC accuracy. The application of a sparsifying transform
such as DCT is not necessary for the present purpose, which is car-
tilage sodium imaging in the knee, as it generates similar results
than W = 1. The sodium cartilage images are sparse enough for
applying CS on the image domain itself, and CS reconstruction is
therefore faster (�5 min with W = 1 instead of �9 min with
W = DCT).

For verification, the CS method was also applied on data ac-
quired with undersampling rates R = 1 (8000 projections), R = 2
(4000 projections) and R = 4 (2000 projections) on another volun-
teer, and the resulting images were compared to the images ob-
tained from the CS method applied to simulated R factors on
fully sampled data as described in the Materials and Meth-
odsnStandard Image Reconstruction section. Both methods showed
identical results.
4. Conclusion

This preliminary study shows that CS can be applied to sodium
MRI of cartilage at 7T in order to decrease the acquisition time by a
factor of two without losing accuracy in TSC over different regions
of interest in the cartilage for detecting early signs of OA. Further
studies will involve testing the application of the CS technique to
data acquired at 3T, with and without fluid suppression at both
3T and 7T, combined with new 3D radial based sequences such
as density adapted 3D radial [40], Twisted projection imaging
(TPI) [41] or 3D cones [42] which allow increases in SNR. Further
improvements could be obtained by combining CS with NUFFT in
the iterative process (as F in Eq. (1)), instead of simply working
with the Cartesian k-space (obtained after one NUFFT reconstruc-
tion) for the data consistency part of Eq. (1). This step, however,
is by no means obvious, as the NUFFT algorithm applied from
Cartesian to radial data can induce errors that can propagate dur-
ing the CS algorithm, and as a result reduce the efficiency of the
technique.
A further improvement, upon acquisition of multichannel dou-
ble-tuned (1H + 23Na) RF knee coils at 3T and 7T, would be to apply
CS Sodium MRI in combination with parallel imaging to further re-
duce the imaging time by another factor 2 or 3. Such approaches
are already under development in our center for dynamic proton
MRI [43,44].
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